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ABSTRACT Exercise ventilation (V′E) relative to carbon dioxide output (V′CO2) is particularly relevant to
patients limited by the respiratory system, e.g. those with chronic obstructive pulmonary disease (COPD).
High V′E−V′CO2 (poor ventilatory efficiency) has been found to be a key physiological abnormality in
symptomatic patients with largely preserved forced expiratory volume in 1 s (FEV1). Establishing an
association between high V′E−V′CO2 and exertional dyspnoea in mild COPD provides evidence that
exercise intolerance is not a mere consequence of detraining. As the disease evolves, poor ventilatory
efficiency might help explaining “out-of-proportion” breathlessness (to FEV1 impairment). Regardless,
disease severity, cardiocirculatory co-morbidities such as heart failure and pulmonary hypertension have
been found to increase V′E−V′CO2. In fact, a high V′E−V′CO2 has been found to be a powerful predictor of
poor outcome in lung resection surgery. Moreover, a high V′E−V′CO2 has added value to resting lung
hyperinflation in predicting all-cause and respiratory mortality across the spectrum of COPD severity.
Documenting improved ventilatory efficiency after lung transplantation and lung volume reduction surgery
provides objective evidence of treatment efficacy. Considering the usefulness of exercise ventilatory
efficiency in different clinical scenarios, the V′E−V′CO2 relationship should be valued in the interpretation
of cardiopulmonary exercise tests in patients with mild-to-end-stage COPD.
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To me it does not seem all movements are exercise, but only when it is vigorous. Since vigor is relative,
the same movement might be exercise for one and not for another. The criterion of vigorousness is
change of respiration; those movements which do not alter the respiration are not exercise.

Galen, Exercise and Massage, in On Hygiene, circa 200 AD

Introduction
Dynamic exercise, as recognised by Galen, is characteristically associated with changes in frequency and depth
of breathing, i.e. hyperpnoea. Moreover, he cogently observed that those respiratory changes are somehow
linked to exercise intensity (“movement vigorousness”). Eighteen centuries later we now know that changes in
exercise pulmonary ventilation (V′E), at least before the development of metabolic acidosis (or hypoxaemia in
disease), are exquisitely commensurate to the rate at which metabolically produced carbon dioxide is released
by the lungs (V′CO2, i.e. venous return × mixed-venous CO2 content) [1, 2]. Thus, the response of V′E relative
to V′CO2 (the V′E−V′CO2 relationship) has been named “ventilatory efficiency” [3], an implicit recognition that
meeting metabolic demand to maintain arterial blood gas and pH is the overriding goal of ventilation [2].
Although increased (or even decreased) V′E relative to V′CO2 may not always inform us how efficient V′E is
relative to arterial blood gas homeostasis (see section Physiological bases), the term “ventilatory efficiency” has
gained popularity to describe the exercise V′E−V′CO2 relationship [4–7].

It is rather axiomatic that the issue of exercise ventilatory efficiency is particularly relevant to patients
primarily limited by ventilation, e.g. those with chronic obstructive pulmonary disease (COPD) [8, 9].
Surprisingly, however, its clinical importance has been mostly recognised in diseases for which mechanical–
ventilatory constraints are not the dominant feature, e.g. heart failure [4–7, 10] and pulmonary arterial
hypertension (PAH) [11, 12]. More recently, however, a substantial body of evidence has accumulated
showing that abnormalities in the V′E−V′CO2 relationship during incremental cardiopulmonary exercise
testing (CPET) are present across the spectrum of COPD severity. Thus, V′E−V′CO2 measurement has
advanced our understanding of mechanisms of exercise intolerance and, particularly in milder COPD,
exertional breathlessness. Moreover, this measurement has allowed us to better judge the functional impact
of co-morbidities, to assess future risk and prognosis and to determine the complex effects of therapeutic
interventions on exercise tolerance in COPD (table 1). The present manuscript will discuss these emerging
findings from a clinically applied perspective with emphasis on the extant gaps in current knowledge.

Physiological bases
It is well established that the V′E required to washout a given rate of CO2 production is higher the lower
the arterial partial pressure for CO2 (PaCO2) (as more V′E is needed to keep PaCO2 low compared with a
high value) and the larger the ventilation “wasted” in the dead space (VD), i.e.

V 0
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V 0
CO2

¼ 1

PaCO2 � 1� VD

VT

� �� � (1)

where V′E/V′CO2 ratio is the ventilatory equivalent for CO2 and VD/VT is the physiological (anatomical
plus alveolar) dead space fraction of tidal volume [2]. Of note, VD/VT decreases in a curvilinear manner as
exercise progresses, i.e. more alveoli are recruited as VT and V′E increase (figure 1a) [67]. Thus, a major
contribution to the decreasing VD/VT is the greater compliance of the alveoli over that of the airways,
allowing greater alveoli expansion relative to the airways ([67] and reviewed in [68]). Moreover, VT

increases owing to a large increase in end-inspiratory lung volume and a small, but important, decrease in
end-expiratory lung volume; thus, VT remains positioned on the most compliant (linear) portion of the
respiratory system S-shaped pressure–volume relationship (as reviewed in [69]).

In this context, if V′E/V′CO2 did not decrease in tandem with VD/VT the resulting alveolar hyperventilation
would lower PaCO2 leading to progressive respiratory alkalosis [2, 70]. Although the exact mechanisms
remain controversial (see [71] and [72] for a recent debate on the topic), V′E/V′CO2 decreases in direct
proportion to VD/VT (figure 1b). Thus, PaCO2 is kept constant (↔) during mild-to-moderate exercise in
healthy humans (figure 1c) [1, 2, 67, 73]:
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TABLE 1 Overview of cardiopulmonary exercise testing-based studies on ventilatory efficiency in different clinical scenarios in
chronic obstructive pulmonary disease (COPD)

Clinical context Subjects n Disease severity Main results

Exercise intolerance
PALANGE [13] 9 FEV1 <50% ↑V′E−V′CO2 slope in walking than cycling
O’DONNELL [14] 20 FEV1=34±3% ↓V′E at a given V′CO2 in CO2 retainers compared with non-retainers
NAKAMOTO [15] 10 FEV1=27–70% V′E−V′CO2 slope not related to increased muscle ergoreflex activity
OFIR [16] 42 FEV1=91±8% ↑V′E/V′CO2 nadir in mild COPD with chronic dyspnoea
ORA [17] 36 FEV1=49±10% ↓V′E/V′CO2 nadir in obese patients with COPD
PAOLETTI [18] 16 FEV1=54±18% ↓V′E−V′CO2 slope in more extensive emphysema
GUENETTE [19] 64 FEV1=86±11% No sex effect on V′E/V′CO2 nadir
CAVIEDES [20] 35 FEV1=59±22% ↑V′E/V′CO2 nadir associated with lower maximal exercise capacity
CHIN [21] 40 FEV1=87±11% ↑V′E/V′CO2 with added external dead space in mild COPD
TEOPOMPI [22] 56 FEV1=26–80% ↑V′E−V′CO2 intercept related to greater dynamic hyperinflation

↑V′E−V′CO2 slope associated with lower maximal exercise capacity
GUENETTE [23] 32 FEV1=93±9% ↑V′E/V′CO2 throughout incremental exercise in mild COPD
CIAVAGLIA [24] 12 FEV1=60±13% No effect of exercise modality on V′E/V′CO2 in obese patients with COPD
BARRON [25] 24 FEV1=60±13% V′E/V′CO2 nadir showed excellent test–retest reliability

superior to V′E−V′CO2 slope
V′E/V′CO2 nadir showed better test–retest reliability in

COPD than heart failure
O’DONNELL [26] 208 GOLD 1 and 2 ↑V′E/V′CO2 throughout incremental treadmill tests in GOLD 1 and 2
NEDER [27] 276 GOLD 1 to 4 ↑V′E−V′CO2 slope associated with ventilation inhomogeneity in GOLD 1 and 2
ELBEHAIRY [28] 40 FEV1=91±10% ↑V′E/V′CO2 nadir in GOLD grade 1B with and without chronic bronchitis
NEDER [29] 316 GOLD 1 to 4 ↑V′E−V′CO2 intercept from GOLD 1 to 4 associated with exertional dyspnoea

↑V′E−V′CO2 slope in GOLD 1 and 2 but lower slopes in GOLD 3 and 4
ELBEHAIRY [30] 22 FEV1=94±10% ↑V′E/V′CO2 associated with greater VD/VT in symptomatic GOLD 1
FAISAL [31] 48 FEV1=63±22% ↑V′E/V′CO2 in COPD and ILD presenting with similar resting

inspiratory capacity
CRISAFULLI [32] 51 FEV1=55±16% ↑V′E/V′CO2 slope associated with emphysema extension on chest CT
ELBEHAIRY [33] 20 FEV1=101±13% Similar V′E/V′CO2 in smokers without COPD and healthy controls
SOUMAGNE [34] 20 FEV1=−1.02±0.64

z-score
↑V′E/V′CO2 nadir in asymptomatic smokers with airflow obstruction

JONES [35] 19 FEV1=82±13% ↑V′E/V′CO2 nadir associated with emphysema extension and lower transfer factor
Influence of co-morbidities

HOLVERDA [36] 25 NA ↑V′E/V′CO2 nadir associated with mean pulmonary artery pressure
VONBANK [37] 42 FEV1=1.1±0.5 L ↑ Rest and peak V′E/V′CO2 in patients with associated PAH
BOERRIGTER [38] 47 FEV1=55±17% Pronounced ↑ V′E−V′CO2 slope in a sub-group (n=9) with severe PAH
THIRAPATARATONG [39] 48 FEV1=31±10% No effect of β-blockers on V′E/V′CO2 nadir
THIRAPATARATONG [40] 98 FEV1=20±7% No association of peak V′E/V′CO2 with PAH in severe

to very severe COPD
TEOPOMPI [41] 46 FEV1=52±16% ↓V′E−V′CO2 slope in COPD compared with heart failure in patients

with poorer exercise capacity
↑V′E−V′CO2 intercept in COPD compared with heart failure

THIRAPATARATONG [42] 108 FEV1=26±14% ↑V′E/V′CO2 nadir in COPD patients with coexistent coronary artery disease
APOSTOLO [43] 95 FEV1=53±13% ↑V′E−V′CO2 intercept in COPD and COPD- heart

failure compared with heart failure
ARBEX [44] 98 FEV1=55±17% ↑V′E−V′CO2 slope and V′E/V′CO2 nadir in COPD- heart

failure compared with COPD
↓V′E−V′CO2 intercept in COPD- heart failure compared with COPD

ROCHA [45] 68 FEV1=60±18% ↑V′E−V′CO2 slope in COPD- heart failure with exercise
oscillatory ventilation

Risk assessment/prognosis
TORCHIO [46] 145 FEV1=73±16% V′E−V′CO2 slope ⩾34 predicted mortality after lung resection surgery
BRUNELLI [47] 225 FEV1=81±18% V′E−V′CO2 slope ⩾35 predicted poor outcome after lung

resection surgery
SHAFIEK [48] 55 FEV1=60±17% V′E−V′CO2 slope >35 predicted poor outcome after lung

resection surgery
NEDER [49] 288 FEV1=18–148% V′E/V′CO2 nadir >34 added to resting hyperinflation to predict mortality
ALENCAR [50] 30 FEV1=57±17% V′E/V′CO2 nadir >34 and right ventricular function predicted

mortality in COPD–heart failure
Effects of interventions

ORENS [51] 5 FEV1=57±4% Single lung transplant decreased V′E/V′CO2 peak
SOMFAY [52] 10 FEV1=31±10% Decrements in V′E with hyperoxia correlated with decreases in V′CO2

O’DONNELL [53] 11 FEV1=31±3% Proportional decrements V′E and V′CO2 with hyperoxia in advanced COPD
O’DONNELL [54] 23 FEV1=42±3% Salmeterol proportionally increased V′E and V′CO2 during constant

work rate exercise

Continued
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These considerations provide the physiological basis for the assertion that the V′E/V′CO2 profile provides
useful information about the VD/VT trajectory, particularly if PaCO2 is concomitantly measured [2, 67, 70, 74].
The major assumptions, however, are the absence of mechanical constraints to V′E increase [75], i.e. the
“output” (V′E) can appropriately adjust to its determinants (V′CO2, VD/VT and PaCO2) and there
is neither exercise-induced hypercapnia nor increased additional chemo-stimulation of ventilation,
e.g. hypoxaemia [1, 2, 4, 73].

Equation 1 also helps us to understand why increases in V′E relative to V′CO2 do not necessarily imply poor
ventilatory efficiency. For instance, the system is arguably not “inefficient” if a high V′E/V′CO2 is needed to keep
PaCO2 at a low level as determined by the respiratory controller (e.g. chronic respiratory alkalosis or chronic
metabolic acidosis) or there is an extra source of afferent stimuli to increase ventilation (e.g. hypoxaemia) [10].
For the sake of simplicity, the subsequent discussion assumes that an increased slope of the V′E−V′CO2

relationship and/or an increased V′E/V′CO2 ratio equals “poor efficiency” unless otherwise specified.

Methodological considerations
In response to rapidly incremental CPET, the V′E−V′CO2 relationship has been analysed in the V′E/V′CO2

ratio versus V′CO2 plot (figure 1b) or in the V′E versus V′CO2 plot (figure 1d) [4]. The lowest (nadir)
V′E/V′CO2 is typically reached just before V′E starts to increase in compensation for lactic acidosis at the
respiratory compensation point (RCP) (figure 1b–d). Provided the subject can tolerate high levels of exercise
(i.e. high V′CO2), V′E/V′CO2 virtually equals (i.e. “asymptotes”) to the slope of the V′E−V′CO2 relationship
(refer to the supplementary material for further elaboration) [76]. Thus, the V′E/V′CO2 nadir and V′E/V′CO2 at
the lactate threshold are almost indistinguishable in normal subjects [74]. As the lactate threshold may not
always be identified, particularly in clinical populations with low exercise capacity [77, 78], the V′E/V′CO2

nadir seems a more accurate indication of ventilatory efficiency than the V′E/V′CO2 at the lactate threshold.
The V′E/V′CO2 nadir has been found to be highly reproducible in normal subjects [74] and in patients with
COPD [25]. The V′E/V′CO2 nadir, however, might underestimate ventilatory efficiency if the V′E/V′CO2

descending curve is prematurely interrupted (dashed line in figure 1b), e.g. premature lactic acidosis or an
excessively short test duration [79]. As expected, end-exercise V′E/V′CO2 is higher than the nadir as the
former incorporates the hyperventilatory response to late-exercise acidosis. In other words, end-exercise
V′E/V′CO2, by definition, does not constitute an index of ventilatory efficiency in those who are able to
exercise beyond the RCP. Most patients with moderate-to-severe COPD, however, either do not reach the
RCP or are unable to further increase V′E. Thus, nadir and end-exercise V′E/V′CO2 are often equivalent in
most patients, with the exception of some less impaired patients with milder disease [29].

It is important to recognize that the V′E/V′CO2 response contour is intrinsically linked to how V′E dynamically
changes in relation to V′CO2 taking into consideration its starting point [2, 4, 71, 72, 76]. The former is
reflected by the slope of the regression line between V′E and V′CO2 and the latter by its intercept (i.e. V′E when
V′CO2=0) (figure 1 and figure S1). Considering that in normal subjects the V′E intercept is often a small
positive number (<3 L min−1 on average) [74], V′E/V′CO2 equals the slope of the V′E−V′CO2 relationship at
high V′CO2 values (refer to the supplementary material for further elaboration) [67, 70, 76]. It should be noted

TABLE 1 Continued

Clinical context Subjects n Disease severity Main results

PALANGE [55] 12 FEV1 <50% pred Heliox increased V′E/V′CO2 during constant work rate exercise
O’DONNELL [56] 187 FEV1=44±13% ↑V′E (due to higher VT) at a given V′CO2 with tiotropium

compared with placebo
PORSZASZ [57] 24 FEV1=36±8% Exercise training proportionally reduced V′E and V′CO2 during constant work

rate exercise
BOBBIO [58] 11 FEV1=53±20% Lobectomy increased V′E−V′CO2 slope
EVES [59] 10 FEV1=47±17% Normoxic heliox increased V′E/V′CO2 more than hyperoxic heliox
CHIAPPA [60] 12 FEV1=45±13% Heliox increased V′E/V′CO2 during constant work rate exercise
HABEDANK [61] 8 NA Bilateral lung transplant decreased V′E−V′CO2 slope
GAGNON [62] 8 FEV1=67±8% Spinal anaesthesia reduced V′E/V′CO2 during constant work rate exercise
KIM [63] 1475 FEV1 <45% LVRS reduced V′E/V′CO2 during unloaded exercise
GUENETTE [64] 15 FEV1=86±15% ↑V′E/V′CO2 at isotime with fluticasone/salmeterol compared with placebo
QUEIROGA [65] 24 FEV1=35±10% Heliox increased V′E/V′CO2 during constant work rate exercise
ARMSTRONG [66] 55 FEV1=26±7% LVRS reduced V′E/V′CO2 peak and nadir

↑: increased; ↓: decreased; FEV1: forced expiratory volume in one second; VʹE: ventilation; VʹCO2: carbon dioxide output; PAH: pulmonary
arterial hypertension; GOLD: Global Initiative for Obstructive Lung Disease; ILD: interstitial lung disease; LVRS: lung volume reduction surgery;
NA: not available.
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that considering all data points (i.e. including those after the RCP) will necessarily increase the computed
slope and reduce the computed intercept. Although this might be advantageous for prognostication in heart
failure [80] and PAH [11], not only it underestimates ventilatory efficiency (equation 1) but it also does not
accurately describe the underlying response profile. As mentioned, however, most patients with
moderate-to-severe COPD are unable to exercise beyond the RCP. In other words, there is no upward
inflection in the V′E versus V′CO2 response in most of these patients. Thus, in practice, drawing a single line
from unloaded to peak exercise fits well the overall V′E response in this particular sub-group of patients [29].

Some studies have examined the influence of potential modifiers on ventilatory efficiency. Ageing has been
consistently associated with higher VD/VT and poorer ventilatory efficiency, regardless the method of
expression (ratio or slope) [74, 79, 81] or level of fitness [82]. Females typically present with slightly greater
V′E−V′CO2 slopes than males [79], likely a consequence of a lower VT [83]. The fact that PaCO2 does not
differ between younger versus elderly or men versus women [1, 73] provides another piece of evidence that
exercise V′E increases precisely to maintain a stable alveolar ventilation/V′CO2 ratio [1, 2, 4, 73]. It is also
remarkable that exercise modality (walking versus cycling) does not seem to influence ventilatory efficiency
in normal subjects [74, 81] though the V′E−V′CO2 slope was higher during treadmill walking compared with
cycling in moderate-to-severe COPD [13].

Ventilatory efficiency and exercise intolerance
A substantial body of evidence has accumulated indicating that abnormalities in ventilatory efficiency across
the continuum of disease severity in COPD (table 1). Poor ventilatory efficiency has been found to be a key
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physiological abnormality in symptomatic patients with largely preserved forced expiratory volume in 1 s
(FEV1) (figure S4) [29, 21, 26, 28, 30, 33]. The physiological basis for these derangements seems to stem from
an enlarged VD per se rather than a small VT or a low PaCO2 [30]. In fact, external (series) VD predictably
increased V′E/V′CO2 in these patients [21]. Additional research is warranted to investigate the structural
correlates of increased VD in mild COPD, e.g. microvascular disease [84], early emphysema [32, 85, 86],
ventilation distribution heterogeneity [27, 86]. Regardless of the mechanism(s), high V′E/V′CO2 nadir is linked
to earlier attainment of critical dynamic mechanical constraints: inspiratory reserve volume becomes critically
reduced. This explains, in part, the increased exertional dyspnoea and reduced exercise capacity in mild
COPD compared with age-matched healthy controls [21, 23, 26, 28, 30, 45]. This pattern of abnormalities was
also seen in most patients with moderate airflow obstruction (Global Initiative for Chronic Obstructive Lung
Disease (GOLD) stage 2) [29]. Collectively, these studies point to the important contribution of reduced
ventilatory efficiency to dyspnea and reduced exercise capacity in smokers with only mild-to-moderate airflow
obstruction [87, 88]. Interestingly, V′E/V′CO2 nadir was also increased in symptomatic [16], but not in
asymptomatic [33], smokers without COPD. These findings are consistent with the notion that poor
ventilatory efficiency is instrumental to explain exertional dyspnoea at the earlier stages of the disease [87].

Similarly to heart failure [89–91], VD/VT worsens as disease severity increases in patients with COPD [88].
Interestingly, however, while the most commonly used parameter of ventilatory efficiency in the clinical
literature (the V′E−V′CO2 slope) increases from mild to severe heart failure [4–7, 10], the V′E−V′CO2 slope
decreases and the V′E intercept increases in severe-to-very-severe COPD compared with milder disease.
Consequently, the V′E/V′CO2 nadir may remain stable (but still higher than in health) if the effects of a low
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slope in the nadir are cancelled out by a high intercept or even diminished if the slope is markedly reduced
in severe-to-very-severe COPD (figure 2 and figure S3 for representative patients) [29]. The seemingly
paradoxical finding of lower V′E−V′CO2 slope in advanced COPD is likely explained by worsening
mechanical constraints to V′E increase [88] and, in end-stage disease, to hypercapnia (see section
Physiological bases) [14, 92]. Increases in V′E intercept in COPD were associated with worsening dynamic
hyperinflation, greater exertional dyspnoea and poorer exercise tolerance as the disease evolved [29].
Interestingly, obesity in COPD also decreased V′E/V′CO2 nadir, likely due to greater ventilatory constraints
and, conceivably, a higher PaCO2 set-point [17].

Little is known about the structural correlates of the V′E−V′CO2 slope and the V′E intercept in COPD.
Adding external VD in normal subjects had a more discernible effect on the V′E intercept than the V′E−
V′CO2 slope both in health [68, 93, 94] and mild COPD [21]. However, in-series VD may not perfectly
mimic alveolar (in-parallel) VD as found in patients with pulmonary diseases. Thus, the former is
associated with a greater CO2 loading in the airways (re-breathing), which might further challenge
ventilatory control [71, 72]. It could be argued that as the V′E−V′CO2 slope is reduced by progressive
mechanical respiratory constraints in severe-to-very-severe COPD [29], a high V′E intercept is a necessary
and empirical consequence of a shallower slope independent of the VD [92]. Nevertheless, some patients
with COPD do present with shallow slopes but high intercepts and vice versa [29, 43]. Additional studies
examining changes in V′E−V′CO2 slope and V′E intercept across the continuum of COPD severity in the
context of structural abnormalities (emphysema severity, pulmonary microvascular abnormalities, small
airway disease) and CO2 chemosensitivity might shed new light on the topic (table 2).

Impact of co-morbidities on ventilatory efficiency
Poor ventilatory efficiency has been consistently reported in PAH [11, 12], heart failure [4–7, 10] and, to a
lesser extent, coronary artery disease [95]. This is likely secondary to a complex interaction among increased
ventilatory drive from multiple afferent sources (chemo-, baro- and ergoreception) and high VD/VT [96].
Impaired ventilatory efficiency persists in COPD with associated PAH [36, 37] with the highest V′E−V′CO2

slope found in severe, out-of-proportion pulmonary hypertension [38]. Interestingly, the V′E−V′CO2 slope did
not differ in severe to very severe COPD regardless if they had coexistent PAH or not [40]. These findings
support the notion that severe respiratory mechanical constraints in COPD dampen an excessive ventilatory
response despite potential increases in “wasted” ventilation and other sources of afferent stimuli [29].

Joint analysis of three independent investigations [41, 43, 44] indicates that patients with COPD–heart failure
overlap present with higher V′E−V′CO2 slopes but lower V′E intercepts than patients with COPD alone (figure
S5). Moreover, overlap patients had greater V′E intercepts compared with heart failure in isolation [43]. Thus,

TABLE 2 Key unanswered clinical questions on exercise ventilatory efficiency in chronic obstructive pulmonary disease (COPD)

Exercise intolerance What are the structural determinants of increased dead space in mild disease?
What is the physiological meaning of the V′E−V′CO2 intercept?
Is ventilatory efficiency consistently associated with specific disease phenotypes?
How does very severe, end-stage disease impact on ventilatory efficiency?
Is resting V′E−V′CO2 clinically useful to predict exercise intolerance and dyspnea?

Influence of co-morbidities Do emphysema extent and COPD phenotype influence ventilatory efficiency in COPD- heart failure overlap?
Do heart failure etiology and heart failure with preserved ejection fraction influence ventilatory

efficiency in overlap?
Does oscillatory exercise ventilation impact on dyspnea and exercise intolerance in overlap?
What is the effect of exertional hypoxia on ventilatory efficiency in hypoxemic overlap?
Does ventilatory efficiency relate to right ventricular-pulmonary arterial coupling in COPD?

Risk assessment/prognosis Why does ventilatory efficiency predict poor peri-operative outcome in lung resection surgery?
What is the best parameter of ventilatory efficiency to predict poor surgical outcome across the spectrum

of disease severity?
Does poor ventilatory efficiency independently predict poor outcome in severe to very severe patients?
How best associate ventilatory efficiency with clinical data to determine prognosis?
Does longitudinal assessment of ventilatory efficiency improve prognosis estimation?

Effects of interventions Do exercise training and inspiratory muscle training improve ventilatory efficiency?
What is the most sensitive parameter to detect improvement in ventilatory efficiency?
Do interventions aimed to improve pulmonary vascular function impact on ventilatory efficiency?
Is there any beneficial effect on pharmacological interventions in overlap and out-of-proportion pulmonary

hypertension?
Do bronchodilators improve ventilatory efficiency in selected patients?

V′E: ventilation; V′CO2: carbon dioxide output.
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though heart failure further worsened ventilatory efficiency in COPD, lung mechanical constraints (and
increased CO2 “set-point” in more advanced COPD) blunted the overall ventilatory response compared with
heart failure alone. Importantly, impaired ventilatory efficiency in COPD–heart failure overlap was associated
with greater exertional dyspnoea and poorer exercise tolerance [44]. There is also recent evidence that periodic
breathing, which is associated with increased VD and poor ventilatory efficiency [96], increases dyspnoea and
reduces exercise tolerance in these patients [45]. Of note, the ventilatory oscillations were associated with higher
operating lung volumes; moreover, they consistently ceased when critical inspiratory constraints were reached
(figure S4) [45]. This observation highlights the overriding influence of abnormal mechanics in constraining
exercise ventilation in COPD, even in the presence of a heightened ventilatory drive.

It remains unclear whether emphysema extent, disease phenotype, heart failure aetiology and heart failure
with preserved ejection fraction [97] influence ventilatory efficiency in individual COPD–heart failure
overlap patients. For instance, coronary artery disease, even without overt heart failure, also increased
ventilatory inefficiency in COPD [42]. Arterial hypoxemia leading to high hypoxic drive does not seem to
contribute to poor ventilatory efficiency in overlap [44]; however, few hypoxaemic patients were enrolled
in previous studies [41, 43, 44]. Although β-blockers failed to decrease the V′E/V′CO2 nadir in COPD [39],
the impact of prospective pharmacological interventions on ventilatory efficiency remains unknown in
COPD–heart failure overlap and in COPD patients with out-of-proportion pulmonary hypertension.
Potential improvements in ventilatory efficiency might prove valuable to decrease exertional dyspnoea and
improve exercise tolerance in selected patients, particularly when cardiocirculatory abnormalities
predominate over mechanical constraints (table 2) [38].

Risk assessment and prognosis
Most patients submitted to lung resection surgery due to lung cancer present with COPD [98]. Resting
pulmonary function tests and, to a lesser extent, peak O2 uptake (V′O2) [99] have been used to assess
perioperative risk in these patients. There is mounting evidence that a high V′E−V′CO2 slope is also a powerful
predictor of poor surgical outcome for lung resection surgery [46–48], likely superior to peak V′O2 [48]. In this
context, a high V′E−V′CO2 slope might indicate greater VD due to more extensive emphysema and/or high
pulmonary vascular pressures, poorer cardiac performance, higher sympathetic drive, worse exertional
hypoxemia and greater ergorreceptor stimulation [100]. Of note, however, few patients with severe to very
severe COPD (who usually present with lower V′E−V′CO2 slopes) (figure 2) undergo extensive lung resection
surgery and/or pre-operative CPET [46–48]. Thus, it remains to be investigated whether a low V′E−V′CO2 slope
predicts poor outcome in selected patients who despite severe to very severe airflow obstruction are potential
candidates for resection, e.g. young patients with limited disease and no major co-morbidities.

Poor ventilatory efficiency (increased V′E−V′CO2 slope or V′E/V′CO2 nadir) has a powerful negative association
with survival in heart failure independent of peak V′O2 [4–7, 10]. A recent study extended these observations to
patients with COPD, regardless the presence of coexistent heart failure. Moreover, only resting lung
hyperinflation added value to V′E/V′CO2 nadir as a prognosticator [49]. Interestingly, a high V′E/V′CO2 nadir
predicted mortality due to respiratory and non-respiratory causes, suggesting that the above-mentioned
abnormal cardiorespiratory mechanisms may also underlie increased risk of earlier mortality (figure 3) [49]. A
small prospective investigation found that a high V′E/V′CO2 nadir added to impaired resting right ventricular
systolic function in predicting poor outcome in COPD–heart failure overlap [50]. If these findings are
confirmed in larger multicentre studies, ventilatory efficiency might become an important effort-independent
prognostic parameter in patients with COPD with or without heart failure as co-morbidity (table 2).

Effects of interventions
The effects of interventions on ventilatory efficiency have been helpful to uncover the underlying mechanisms of
exercise intolerance and dyspnoea in COPD while providing a physiological rationale for their main mechanism
of action. For instance, interventions primarily aimed at releasing the mechanical constraints (heliox [55, 59, 60,
65], lobectomy [58], and bronchodilators [54, 56, 64]) increased V′E at a given V′CO2. These findings fit well
with the concept that an increased slope of the V′E−V′CO2 relationship should not be uniformly interpreted as
indicative of poor ventilatory efficiency in advanced COPD, at least from a “quantitative” perspective.
Nevertheless, these interventions also reduced the operating lung volumes and exertional breathlessness; thus, it
could be argued that ventilation became “qualitatively” and subjectively more efficient [88].

A different scenario emerged in response to another group of interventions which decreased V′E at a given
V′CO2. Thus, single- [51] and double-lung [61] transplantation and lung volume reduction surgery [63, 66]
lessened VD and increased VT thereby reducing VD/VT with consequent benefits to ventilatory efficiency. This
suggests that the marked effects of these interventions on VD/VT (which would lessen V′E) relatively
outweighed the consequences of lower mechanical constraints, which would otherwise increase V′E [39, 46–49,
98–100]. Lower neural drive (e.g. supplemental O2 [59], spinal anaesthesia [62]) also diminished V′E at a given
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V′CO2. Interestingly, some investigations found proportional decrements in V′E and V′CO2 with O2

supplementation [52, 53]. This suggests that lower chemoreceptor drive to breathe is not the only mechanism
underlying reduction in V′E during hyperoxia in COPD. Limited evidence also suggests that V′E tends to
decrease in tandem with V′CO2 after exercise training in COPD [57]. This is somewhat surprising considering
the potential beneficial effects on breathing pattern (high VT leading to a low VD/VT) and peripheral muscle
afferent stimuli [101]. Additional studies are warranted to further investigate the consequences of training on
ventilatory efficiency, including the potential beneficial effects of inspiratory muscle training [102].

These considerations raise the question of why inhaled bronchodilators have not consistently changed the
V′E−V′CO2 relationship in COPD [103]. However, it should be recognised that ventilatory efficiency has not been
specifically investigated in bronchodilator trials. Since high-intensity, constant work rate exercise testing is more
sensitive than incremental CPET for the purpose of bronchodilator evaluation [104, 105], there are only sparse
data on effects of bronchodilators on V′E−V′CO2 slope and V′E intercept during incremental tests. For instance,
less mechanical constraints tending to increase V′E [39, 46–49, 98–100] may be off-set by a lower VD/VT, which
tends to decrease V′E [50, 55, 59, 60]. Such complex interactions would probably vary among subjects in large
clinical trials. This topic also merits more detail analysis as inter-individual changes in ventilatory efficiency may
explain the reported variability on exercise tolerance and dyspnoea despite apparent beneficial effects on resting
lung mechanics in recent trials (table 2) [103]. For example, in mild COPD, effective bronchodilation and lung
deflation may not translate into improved dyspnoea and exercise endurance if decreased ventilatory efficiency
(and consequent increased inspiratory neural drive) remain unchanged [16, 106].

Applying ventilatory efficiency to clinical management of COPD
Based on the evidence summarised in table 1, there are some specific scenarios in which the V′E−V′CO2

measurement can be useful to address clinically relevant issues in patients with COPD. Firstly, most
symptomatic patients with preserved or only mildly reduced FEV1 are chronically sedentary [30]. Establishing
an association between excess exercise ventilation and greater dyspnoea scores would provide evidence that
patient’s exercise intolerance is not a mere consequence of detraining [9, 16, 87]. This might prompt a more
proactive approach to early treatment [107]. Secondly, some patients with COPD might present with
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FIGURE 3 Value of poor ventilatory efficiency (high ventilation (V′E)/carbon dioxide output (V′CO2) nadir) in isolation and associated with resting lung
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COPD. Reproduced from [49] with permission from the publisher.
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“out-of-proportion” breathlessness (to FEV1 impairment) [9, 88]. Poor ventilatory efficiency, often driving
faster rates of dynamic hyperinflation [9, 16, 87], would provide a mechanistic explanation to patients’
symptoms. This might indicate room for treatment optimisation, including pharmacological (e.g. dual
bronchodilatation) [103] and non-pharmacological (e.g. pulmonary rehabilitation to decrease ventilatory
demands) [57, 108]. Thirdly, marked increases in V′E/V′CO2 nadir should raise concerns regarding coexisting
pulmonary hypertension [36, 39] or, in the right clinical context, heart failure [43, 44]. This is particularly true
in the absence of another potential explanation for increased “wasted” ventilation, such as extensive
emphysema on chest computed tomography [18]. Identification of co-morbidities increasing exercise
ventilation and symptom burden is also important to avoid the potential iatrogenic consequences of excessive
bronchodilator inhalation in patients with coexistent cardiovascular disease [109, 110]. Thus, further
cardiological assessment might be warranted in these patients. Fourthly, a high V′E/V′CO2 nadir in
COPD patients with lung cancer should raise concerns regarding increased risk of peri-operative complications
[46–48]. This might influence the decision in favour of a more economical resection in high-risk patients.
Fifthly, identification of a high V′E/V′CO2 nadir in a severely hyperinflated patient would indicate higher risk of
a life-threatening exacerbation [49]. Thus, the patient would benefit from closer follow up and optimisation of
anti-exacerbation measures (e.g. phosphodiesterase inhibitor, action plan, macrolide prophylaxis). Finally,
documenting improved ventilatory efficiency after lung transplantation [51, 61] or lung volume reduction
surgery [63, 66] would provide objective evidence of efficacy of these costly treatment approaches.

Conclusions
Compared with heart failure, for which the determinants and clinical consequences of an abnormal
exercise V′E−V′CO2 relationship have been well established, the value of ventilatory efficiency measurement
during exercise has only recently become a target for systematic scrutiny in COPD (table 1). As in heart
failure, the V′E−V′CO2 slope and the V′E/V′CO2 nadir are consistently increased in patients with mild to
moderate COPD likely exposing unsuspected but clinically significant ventilation/perfusion abnormalities
within the lungs. Conversely, while these specific efficiency parameters continue to worsen as heart failure
progresses, this is not necessarily the case with advancing COPD due to increasing ventilatory constraints.
Thus, a seemingly “normal” V′E−V′CO2 slope does not rule out abnormal ventilatory efficiency in more
advanced COPD. Higher V′E intercept as COPD worsens, however, may result in a progressively higher
V′E/V′CO2 nadir. In fact, the contribution of a high V′E intercept to V′E/V′CO2 nadir increases as COPD
evolves (as detailed in the supplementary material). Thus, the V′E intercept might add important
information to the interpretation of ventilatory (in)efficiency in patients with severe to very severe COPD.

Although much remains to be discovered, there is growing evidence that measurement of exercise
ventilatory efficiency has potential clinical utility across the spectrum of disease severity in COPD. The
V′E/V′CO2 nadir seems a particularly useful index of ventilatory efficiency across the continuum of disease
severity, being linked to important clinical outcomes such as dyspnoea, reduced exercise capacity and even
mortality (table 1). Based on recent studies, ventilatory efficiency measurements may be important for the
individualised assessment of exercise intolerance in mild-to-moderate COPD, notably in individuals with
disproportionate dyspnoea (table 1).
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